Image inpainting is the task of filling masked or unknown regions of an image with visually realistic contents, which has been remarkably improved by Deep Neural Networks (DNNs) recently. Essentially, as an inverse problem, the inpainting has the underlying challenges of reconstructing semantically coherent results without texture artifacts. Many previous efforts have been made via exploiting attention mechanisms and prior knowledge, such as edges and semantic segmentation. However, these works are still limited in practice by an avalanche of learnable prior parameters and prohibitive computational burden. To this end, we propose a novel model -- Wavelet prior attention learning in Axial Inpainting Network (WAIN), whose generator contains the encoder, decoder, as well as two key components of Wavelet image Prior Attention (WPA) and stacked multi-layer Axial-Transformers (ATs). Particularly, the WPA guides the high-level feature aggregation in the multi-scale frequency domain, alleviating the textual artifacts. Stacked ATs employ unmasked clues to help model reasonable features along with low-level features of horizontal and vertical axes, improving the semantic coherence. Extensive quantitative and qualitative experiments on Celeba-HQ and Places2 datasets are conducted to validate that our WAIN can achieve state-of-the-art performance over the competitors. The codes and models will be released.


翻译:映射中的图像是用视觉现实内容填补遮蔽或未知图像区域的任务,这种任务最近由深神经网络(DNNS)显著改进。基本上,作为一个反面问题,油漆具有在没有纹理工艺品的情况下重建语义一致性结果的根本挑战。许多以前的努力是通过利用注意力机制和先前知识,如边缘和语义分割等,在实际中,这些工作仍然有限,因为对以前可学习的参数和令人望而生畏的计算负担进行了估价。为此,我们提出了一个新颖模型 -- -- 在Axial Inpaint网络(WAIN)中,Wavelet先前的注意力学习,其产生者包括编码器、解码器,以及Wavelet图像先前注意和堆放多层Axial-变异体(ATs)的两个关键组成部分。尤其是,WPA将指导多频域的高级特征汇总,并减轻文字制品的负担。 Stacked ATs使用不显眼的线索,帮助模型在Axial Q-C-C-C-C-C-C-C-C-C-C-C-Sal-Sal-C-C-Sal-Sal-C-C-C-Sild-Syal-C-C-Sild-Sildal-Syal-C-Syal-Syal-C-Syal-C-Sy-Syal-Syal-Syal-C-C-C-C-C-C-C-C-Sy-C-C-C-C-C-C-C-C-C-C-C-C-C-S-S-S-S-Sal-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
15+阅读 · 2021年7月14日
Arxiv
13+阅读 · 2019年11月14日
VIP会员
相关VIP内容
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关基金
国家自然科学基金
1+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员