In 2007, Grytczuk conjecture that for any sequence $(\ell_i)_{i\ge1}$ of alphabets of size $3$ there exists a square-free infinite word $w$ such that for all $i$, the $i$-th letter of $w$ belongs to $\ell_i$. The result of Thue of 1906 implies that there is an infinite square-free word if all the $\ell_i$ are identical. On the other, hand Grytczuk, Przyby{\l}o and Zhu showed in 2011 that it also holds if the $\ell_i$ are of size $4$ instead of $3$. In this article, we first show that if the lists are of size $4$, the number of square-free words is at least $2.45^n$ (the previous similar bound was $2^n$). We then show our main result: we can construct such a square-free word if the lists are subsets of size $3$ of the same alphabet of size $4$. Our proof also implies that there are at least $1.25^n$ square-free words of length $n$ for any such list assignment. This proof relies on the existence of a set of coefficients verified with a computer. We suspect that the full conjecture could be resolved by this method with a much more powerful computer (but we might need to wait a few decades for such a computer to be available).
翻译:2007 年, Grytczuk 猜测, 任何序列的美元( ell_ i)\\ i\\ ge1} 3美元大小字母的美元, 存在一个无平方的无限字元, 也就是说, 所有美元美元, 美元都是美元。 1906 年的Thue 结果表明, 如果所有 $@ i 美元都是相同的, 就会有一个无限的无方字。 另一方面, 2011 年, Grytczuk 、 Przyby lil}o 和 Zhu 显示, 如果 $\ ell_ i 美元大小为 4 美元而不是 $3 美元, 则也存在一个无平方字字。 在本篇文章中, 我们首先显示, 如果名单是美元大小为$4, 美元, 则无方字数至少为2.45 美元( 前一个类似的约束值为$) 。 我们然后展示我们的主要结果: 如果名单是同一字母的3, 我们就可以构建一个无方字形的单词 。 我们的证据也表明, 以多少 。