A proof for the lower bound is provided for the smallest eigenvalue of finite element equations with arbitrary conforming simplicial meshes. The bound has a similar form as the one by Graham and McLean [SIAM J. Numer. Anal., 44 (2006), pp. 1487--1513] but doesn't require any mesh regularity assumptions, neither global nor local. In particular, it is valid for highly adaptive, anisotropic, or non-regular meshes without any restrictions. In three and more dimensions, the bound depends only on the number of degrees of freedom $N$ and the H\"older mean $M_{1-d/2} (\lvert \tilde{\omega} \rvert / \lvert \omega_i \lvert)$ taken to the power $1-2/d$, $\lvert \tilde{\omega} \rvert$ and $\lvert \omega_i \rvert$ denoting the average mesh patch volume and the volume of the patch corresponding to the $i^{\text{th}}$ mesh node, respectively. In two dimensions, the bound depends on the number of degrees of freedom $N$ and the logarithmic term $(1 + \lvert \ln (N \lvert \omega_{\min} \rvert) \rvert)$, $\lvert \omega_{\min} \rvert$ denoting the volume of the smallest patch. Provided numerical examples demonstrate that the bound is more accurate and less dependent on the mesh non-uniformity than the previously available bounds.
翻译:下约束值的证明为最小的内限元素方程式的最小值, 其任意符合简化的中间值。 约束的形态与 Graham 和 McLean [SIAM J. Numer. Anal., 44 (2006年), pp.1487-1513) 相类似, 但不要求任何网状常规假设, 既不是全球性也不是局部的。 特别是, 它对于高度适应性强、 厌食性或非常规的中间值是有效的。 在三个或更多的维度中, 约束仅取决于自由度的数值 $$, H\\\\ older 表示 $M\\ 1- d/2} (lverd\ talde ~ tal_ auge) 的形态, lever / tvert / ddd$, $\ taldr\\\ liver\ liver1 和 legal lex lex 。 美元 和 美元 数字的内值 和内值的内值, 内值的内值 和内值的内值, 。