We consider the problem of the limited-bandwidth communication for multi-agent reinforcement learning, where agents cooperate with the assistance of a communication protocol and a scheduler. The protocol and scheduler jointly determine which agent is communicating what message and to whom. Under the limited bandwidth constraint, a communication protocol is required to generate informative messages. Meanwhile, an unnecessary communication connection should not be established because it occupies limited resources in vain. In this paper, we develop an Informative Multi-Agent Communication (IMAC) method to learn efficient communication protocols as well as scheduling. First, from the perspective of communication theory, we prove that the limited bandwidth constraint requires low-entropy messages throughout the transmission. Then inspired by the information bottleneck principle, we learn a valuable and compact communication protocol and a weight-based scheduler. To demonstrate the efficiency of our method, we conduct extensive experiments in various cooperative and competitive multi-agent tasks with different numbers of agents and different bandwidths. We show that IMAC converges faster and leads to efficient communication among agents under the limited bandwidth as compared to many baseline methods.


翻译:我们考虑了用于多试剂强化学习的有限带宽通信问题,即代理商在通信协议和调度器的协助下进行合作。协议和调度器共同决定了哪个代理商在向谁传递什么信息。在有限的带宽限制下,需要有一个通信协议来生成信息信息。与此同时,不应建立不必要的通信连接,因为它占用了有限的资源而徒劳无功。在本文件中,我们开发了一个信息多代理通信(IMAC)方法,以学习高效的通信协议和时间安排。首先,从通信理论的角度来看,我们证明有限的带宽限制要求在整个传输过程中传递低渗透性信息。然后,在信息瓶颈原则的启发下,我们学习了宝贵和紧凑的通信协议和基于重量的调度器。为了展示我们的方法的效率,我们用不同数量的代理商和不同带宽度的各种合作和竞争性多代理任务进行了广泛的实验。我们表明,与许多基线方法相比,IMAC公司在有限的带宽度下更快地集中并导致代理商之间高效的通信。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
110+阅读 · 2020年5月15日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
One-Shot Federated Learning
Arxiv
9+阅读 · 2019年3月5日
Arxiv
5+阅读 · 2018年4月22日
VIP会员
相关VIP内容
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
110+阅读 · 2020年5月15日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员