Crowd management relies on inspection of surveillance video either by operators or by object detection models. These models are large, making it difficult to deploy them on resource constrained edge hardware. Instead, the computations are often offloaded to a (third party) cloud platform. While crowd management may be a legitimate application, transferring video from the camera to remote infrastructure may open the door for extracting additional information that are infringements of privacy, like person tracking or face recognition. In this paper, we use adversarial training to obtain a lightweight obfuscator that transforms video frames to only retain the necessary information for person detection. Importantly, the obfuscated data can be processed by publicly available object detectors without retraining and without significant loss of accuracy.
翻译:人群管理依赖于操作员或物体探测模型对监控视频的检查。 这些模型非常庞大, 难以将其安装在资源受限边缘硬件上。 相反, 计算结果往往被卸到( 第三方) 云层平台上。 虽然人群管理可能是合法的应用, 将视频从相机转移到远程基础设施可能会打开获取更多侵犯隐私的信息的大门, 比如个人跟踪或面部识别。 在本文中, 我们使用对抗性培训获得一个轻量级的模糊器, 将视频框架转换为仅保留个人检测所需的信息。 重要的是, 模糊的数据可以在没有再培训和不严重丧失准确性的情况下由公开可用的物体探测器处理 。