For a graph G = (V,E) where each vertex is coloured by one of k colours, consider a subset C of V such that for each vertex v in V\C, its set of nearest neighbours in C contains at least one vertex of the same colour as v. Such a C is called a consistent subset (CS). Computing a consistent subset of the minimum size is called the Minimum Consistent Subset problem (MCS). MCS is known to be NP-complete for planar graphs. We propose a polynomial-time algorithm for finding a minimum consistent subset of a k-chromatic spider graph when k is a constant. We also show MCS remains NP-complete on trees.
翻译:图形 G = (V, E) 中每个顶点的颜色为 k 颜色之一的图形 G = (V, E), 考虑一个子C, 这样对于V\ C 中的每个顶点 v, 其相邻的相邻者在 C 中至少含有一个与 v. 这样的 C 相同颜色的顶点。 计算一个最小尺寸的一致子点, 称为最小一致的子点问题 。 众所周知, 圆点对平面图来说是NP- 完整的。 我们提出一个多数值- 时间算法, 以在 k 是常数时找到 K 色度蜘蛛图中一个最小一致的子点 。 我们还在树上显示 MCS 仍然为 NP 。</s>