Optical coherence tomography (OCT) helps ophthalmologists assess macular edema, accumulation of fluids, and lesions at microscopic resolution. Quantification of retinal fluids is necessary for OCT-guided treatment management, which relies on a precise image segmentation step. As manual analysis of retinal fluids is a time-consuming, subjective, and error-prone task, there is increasing demand for fast and robust automatic solutions. In this study, a new convolutional neural architecture named RetiFluidNet is proposed for multi-class retinal fluid segmentation. The model benefits from hierarchical representation learning of textural, contextual, and edge features using a new self-adaptive dual-attention (SDA) module, multiple self-adaptive attention-based skip connections (SASC), and a novel multi-scale deep self supervision learning (DSL) scheme. The attention mechanism in the proposed SDA module enables the model to automatically extract deformation-aware representations at different levels, and the introduced SASC paths further consider spatial-channel interdependencies for concatenation of counterpart encoder and decoder units, which improve representational capability. RetiFluidNet is also optimized using a joint loss function comprising a weighted version of dice overlap and edge-preserved connectivity-based losses, where several hierarchical stages of multi-scale local losses are integrated into the optimization process. The model is validated based on three publicly available datasets: RETOUCH, OPTIMA, and DUKE, with comparisons against several baselines. Experimental results on the datasets prove the effectiveness of the proposed model in retinal OCT fluid segmentation and reveal that the suggested method is more effective than existing state-of-the-art fluid segmentation algorithms in adapting to retinal OCT scans recorded by various image scanning instruments.
翻译:光学感光学一致性(OCT) 有助于眼科学家评估肌肉水肿、液体积累和微分解的损伤。 OCT 指导处理管理需要对视网膜液进行定量化,这依赖于精确的图像分解步骤。由于对视网膜液进行人工分析是一项耗时、主观和易出错的任务,对快速和稳健的自动解决方案的需求不断增加。在本研究中,为多级视流液分解提议了一个名为 RetiFluidNet 的新型神经神经结构。 使用新的自适应双向导处理管理(SCD)模块、多自适应自适应偏向导处理(SASC)和新颖的多尺度自我监督学习(DSSL)系统。 拟议的基于模型的ODAD 模块的注意力机制使得模型能够自动提取不同级别的电解析流体反应, 引入的SASC 路径进一步考虑在多级流流流层流层流数据分流数据分层上进行分级代表的分级代表性学习, 将三层机级的离值数据流流流流变变换机变的功能用于对等离式的内机变换机变换机变。