Metalearning of deep neural network (DNN) architectures and hyperparameters has become an increasingly important area of research. At the same time, network regularization has been recognized as a crucial dimension to effective training of DNNs. However, the role of metalearning in establishing effective regularization has not yet been fully explored. There is recent evidence that loss-function optimization could play this role, however it is computationally impractical as an outer loop to full training. This paper presents an algorithm called Evolutionary Population-Based Training (EPBT) that interleaves the training of a DNN's weights with the metalearning of loss functions. They are parameterized using multivariate Taylor expansions that EPBT can directly optimize. Such simultaneous adaptation of weights and loss functions can be deceptive, and therefore EPBT uses a quality-diversity heuristic called Novelty Pulsation as well as knowledge distillation to prevent overfitting during training. On the CIFAR-10 and SVHN image classification benchmarks, EPBT results in faster, more accurate learning. The discovered hyperparameters adapt to the training process and serve to regularize the learning task by discouraging overfitting to the labels. EPBT thus demonstrates a practical instantiation of regularization metalearning based on simultaneous training.


翻译:深神经网络(DNN)架构和超光度计的元化学习已成为越来越重要的研究领域。与此同时,网络正规化被公认为对DNN的有效培训至关重要的方面。然而,金属学习在建立有效的正规化方面所起的作用尚未得到充分探讨。最近有证据表明,损失功能优化可以发挥这一作用,但作为全面培训的外部环环路,这是计算不切实际的。本文件介绍了一种算法,称为 " 以人口为基础的进化培训(EPBT) " (EPBT),它使DN的重量培训与损失的金属化功能相隔开来。它们被确认为是使用EPBT可以直接优化的多变式泰勒扩展的参数进行参数化。这种同时调整重量和损失功能的调整可能具有欺骗性,因此,EPBT使用一种称为NVU的多样化超常性循环,以及知识蒸馏,以防止培训期间过度适应。关于CIRA-10和SVHN图像分类基准, EPBT的结果是更快、更精确的学习结果。发现超精确的超标准,适应培训过程的超常化的超常标准化,从而将金属升级化。

0
下载
关闭预览

相关内容

《神经架构搜索NAS》最新进展综述
专知会员服务
56+阅读 · 2020年8月12日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
49+阅读 · 2020年7月4日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
BERT/Transformer/迁移学习NLP资源大列表
专知
19+阅读 · 2019年6月9日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
小样本学习(Few-shot Learning)综述
PaperWeekly
120+阅读 · 2019年4月1日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
【推荐】直接未来预测:增强学习监督学习
机器学习研究会
6+阅读 · 2017年11月24日
【推荐】卷积神经网络类间不平衡问题系统研究
机器学习研究会
6+阅读 · 2017年10月18日
Arxiv
0+阅读 · 2021年9月21日
Arxiv
6+阅读 · 2021年6月24日
Arxiv
8+阅读 · 2021年5月21日
Arxiv
10+阅读 · 2021年3月30日
Arxiv
13+阅读 · 2021年3月29日
Learning Discriminative Model Prediction for Tracking
VIP会员
相关VIP内容
《神经架构搜索NAS》最新进展综述
专知会员服务
56+阅读 · 2020年8月12日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
49+阅读 · 2020年7月4日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
相关资讯
BERT/Transformer/迁移学习NLP资源大列表
专知
19+阅读 · 2019年6月9日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
小样本学习(Few-shot Learning)综述
PaperWeekly
120+阅读 · 2019年4月1日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
【推荐】直接未来预测:增强学习监督学习
机器学习研究会
6+阅读 · 2017年11月24日
【推荐】卷积神经网络类间不平衡问题系统研究
机器学习研究会
6+阅读 · 2017年10月18日
Top
微信扫码咨询专知VIP会员