Deep neural networks have achieved remarkable performance in retrieval-based dialogue systems, but they are shown to be ill calibrated. Though basic calibration methods like Monte Carlo Dropout and Ensemble can calibrate well, these methods are time-consuming in the training or inference stages. To tackle these challenges, we propose an efficient uncertainty calibration framework GPF-BERT for BERT-based conversational search, which employs a Gaussian Process layer and the focal loss on top of the BERT architecture to achieve a high-quality neural ranker. Extensive experiments are conducted to verify the effectiveness of our method. In comparison with basic calibration methods, GPF-BERT achieves the lowest empirical calibration error (ECE) in three in-domain datasets and the distributional shift tasks, while yielding the highest $R_{10}@1$ and MAP performance on most cases. In terms of time consumption, our GPF-BERT has an 8$\times$ speedup.
翻译:深神经网络在基于检索的对话系统中取得了显著的成绩,但显示它们不够精确。尽管像蒙特卡洛漏气和成模仪这样的基本校准方法可以很好地校准,但这些方法在培训或推论阶段是耗时的。为了应对这些挑战,我们提议建立一个高效的不确定性校准框架(GPF-BERT),用于基于BERT的谈话搜索,它使用高斯进程层和BERT结构顶端的焦点损失,以达到高质量的神经级。我们进行了广泛的实验,以核实我们的方法的有效性。与基本校准方法相比,GPF-BERT在三个主域数据集和分布转移任务中实现了最低的经验性校准错误(ECE),同时在多数情况下产生了最高值的1美元和MAP绩效。在时间消耗方面,我们的GPF-BERT拥有8美元的时间。</s>