PageRank is a well-known algorithm whose robustness helps set a standard benchmark when processing graphs and analytical problems. The PageRank algorithm serves as a standard for many graph analytics and a foundation for extracting graph features and predicting user ratings in recommendation systems. The PageRank algorithm iterates continuously, updating the ranks of the pages till convergence is achieved. Nevertheless, the implementation of the PageRank algorithm on large-scale graphs that on shared memory architecture utilizing fine-grained parallelism is a difficult task at hand. The experimental study and analysis of the Parallel PageRank kernel on large graphs and shared memory architectures using different programming models have been studied extensively. This paper presents the asynchronous execution of the PageRank algorithm to leverage the computations on massive graphs, especially on shared memory architectures. We evaluate the performance of our proposed non-blocking algorithms for PageRank computation on real-world and synthetic datasets using Posix Multithreaded Library on a 56 core Intel(R) Xeon processor. We observed that our asynchronous implementations achieve 10x to 30x speedup with respect to sequential runs and 5x to 10x improvements over synchronous variants.
翻译:PageRank是一种众所周知的算法,其稳健性有助于在处理图表和分析问题时设定标准基准。PageRank算法是许多图表分析器的标准,是提取图表特征和预测建议系统用户评级的基础。PageRank算法不断循环,更新页面页级,直至达到趋同。然而,在使用精细比分平行法的共享记忆结构上实施PageRank算法是一项艰巨的任务。对使用不同编程模型的大型图表和共享记忆结构的平行 PageRank内核实验研究和分析已经进行了广泛研究。本文介绍了对PageRank算法的无节奏执行,以利用大图进行计算,特别是在共享的记忆结构方面。然而,我们利用Po66 Multithread 图书馆在56个核心 Intel(R) Xeon进程和共享的存储库中进行实验和分析。我们观察到,我们以10个同步速度对30个同步的同步速度到5x进行10个同步的同步速度。