As an extension of the traveling repairman problem with profits, the multiple traveling repairman problem with profits consists of multiple repairmen who visit a subset of all customers to maximize the revenues collected through the visited customers. To solve this challenging problem, an effective hybrid search algorithm based on the memetic algorithm framework is proposed. It integrates two distinguished features: a dedicated arc-based crossover to generate high-quality offspring solutions and a fast evaluation technique to reduce the complexity of exploring the classical neighborhoods. We show the competitiveness of the algorithm on 470 benchmark instances compared to the leading reference algorithms and report new best records for 137 instances as well as equal best results for other 330 instances. We investigate the importance of the key search components for the algorithm.
翻译:作为旅行修理工利润问题的一个延伸,多重旅行修理工利润问题包括许多修理工,他们走访了所有客户的一个子组,以尽量扩大通过受访客户获得的收入。为了解决这个具有挑战性的问题,提议了一个基于消化算法框架的有效混合搜索算法。它包含两个不同的特征:一个是专门的弧式交叉,以产生高质量的后代解决办法,另一个是快速评估技术,以降低探索古典社区的复杂性。我们展示了470个基准参数的算法的竞争力,与主要参考算法相比,我们展示了470个基准参数的竞争力,报告了137个案例的新最佳记录,以及其他330个案例的相同最佳结果。我们调查了关键搜索组成部分对算法的重要性。