Neural volume rendering enables photo-realistic renderings of a human performer in free-view, a critical task in immersive VR/AR applications. But the practice is severely limited by high computational costs in the rendering process. To solve this problem, we propose the UV Volumes, a new approach that can render an editable free-view video of a human performer in real-time. It separates the high-frequency (i.e., non-smooth) human appearance from the 3D volume, and encodes them into 2D neural texture stacks (NTS). The smooth UV volumes allow much smaller and shallower neural networks to obtain densities and texture coordinates in 3D while capturing detailed appearance in 2D NTS. For editability, the mapping between the parameterized human model and the smooth texture coordinates allows us a better generalization on novel poses and shapes. Furthermore, the use of NTS enables interesting applications, e.g., retexturing. Extensive experiments on CMU Panoptic, ZJU Mocap, and H36M datasets show that our model can render 960 x 540 images in 30FPS on average with comparable photo-realism to state-of-the-art methods. The project and supplementary materials are available at https://fanegg.github.io/UV-Volumes.
翻译:为了解决这个问题,我们建议了UV卷,这是一个可以实时编辑人类表演者可自由观看的新型方法。它将高频(即非mooth)人类外观与3D卷分开,并将其编码为2D神经质质质堆(NTS)中的一项关键任务。光滑的UV卷允许使用更小和更浅的神经网络获取3D的密度和纹理坐标,同时在 2D NTS 中捕捉详细的外观。对于可编辑性,在参数化人类模型和光质质质素坐标之间绘制地图,使我们能够更好地概括新的外观和形状。此外,使用NTS系统可以进行有趣的应用,例如,重新描述。在CMU Pancopic、ZJU Mocap和H36MM-MResty 数据库中进行广泛的实验,使3D的密度和浅度更小得多和浅度的神经神经质网,同时在 2D NTS 中获取详细的外观和纹理坐标坐标坐标坐标坐标坐标坐标坐标。对于2DS 30 的模型和图象可比较的图像显示,在30S-RFPMFPS 的模型中可以使我们的模型和图象的模型中进行模拟的图象和可比较。</s>