Why do Vision Language Models (VLMs), despite success on standard benchmarks, often fail to match human performance on surprisingly simple visual reasoning tasks? While the underlying computational principles are still debated, we hypothesize that a crucial factor is a deficit in visually-grounded serial processing. To test this hypothesis, we compared human and VLM performance across tasks designed to vary serial processing demands in three distinct domains: geometric reasoning, perceptual enumeration, and mental rotation. Tasks within each domain varied serial processing load by manipulating factors such as geometric concept complexity, perceptual individuation load, and transformation difficulty. Across all domains, our results revealed a consistent pattern: decreased VLM accuracy was strongly correlated with increased human reaction time (used as a proxy for serial processing load). As tasks require more demanding serial processing -- whether composing concepts, enumerating items, or performing mental transformations -- the VLM-human performance gap widens reliably. These findings support our hypothesis, indicating that limitations in serial, visually grounded reasoning represent a fundamental bottleneck that distinguishes current VLMs from humans.
翻译:暂无翻译