Optimal zero-delay coding (quantization) of $\mathbb{R}^d$-valued linearly generated Markov sources is studied under quadratic distortion. The structure and existence of deterministic and stationary coding policies that are optimal for the infinite horizon average cost (distortion) problem is established. Prior results studying the optimality of zero-delay codes for Markov sources for infinite horizons either considered finite alphabet sources or, for the $\mathbb{R}^d$-valued case, only showed the existence of deterministic and non-stationary Markov coding policies or those which are randomized. In addition to existence results, for finite blocklength (horizon) $T$ the performance of an optimal coding policy is shown to approach the infinite time horizon optimum at a rate $O(\frac{1}{T})$. This gives an explicit rate of convergence that quantifies the near-optimality of finite window (finite-memory) codes among all optimal zero-delay codes.


翻译:在二次扭曲的情况下,研究了对无限地平线平均成本(扭曲)问题最理想的确定性和固定性编码政策的结构和存在。先前研究无限地平线源的Markov源的零延迟编码最佳性(量化)的结果,或者被认为是有限的字母源,或者,对于$mathbb{R ⁇ d$估值的案例中,只显示存在确定性和非静止的Markov编码政策或随机化的政策。除了存在结果外,对于有限区块长度(horison)来说,最佳编码政策的性能也显示为以$O(\frac{1 ⁇ T}$接近无限时间范围的最佳性。这提供了一种明确的趋同率,使所有最佳零缓冲代码中有限的窗口(fite-emory)的接近最佳性。

0
下载
关闭预览

相关内容

深度强化学习策略梯度教程,53页ppt
专知会员服务
182+阅读 · 2020年2月1日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
时序数据异常检测工具/数据集大列表
极市平台
65+阅读 · 2019年2月23日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Arxiv
0+阅读 · 2021年5月13日
VIP会员
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
时序数据异常检测工具/数据集大列表
极市平台
65+阅读 · 2019年2月23日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Top
微信扫码咨询专知VIP会员