Time series forecasting is a demanding task ranging from weather to failure forecasting with black-box models achieving state-of-the-art performances. However, understanding and debugging are not guaranteed. We propose TS-MULE, a local surrogate model explanation method specialized for time series extending the LIME approach. Our extended LIME works with various ways to segment and perturb the time series data. In our extension, we present six sampling segmentation approaches for time series to improve the quality of surrogate attributions and demonstrate their performances on three deep learning model architectures and three common multivariate time series datasets.
翻译:时间序列预测是一项艰巨的任务,从天气到故障预测,其黑盒模型达到最先进的性能。然而,理解和调试没有得到保证。我们建议使用TS-MULE,这是专门用于延长LIME方法的时间序列的当地代用模型解释方法。我们扩展的LIME以各种方式对时间序列数据进行分解和扰动。在我们的扩展中,我们为时间序列提出了六种抽样分解方法,以提高代用特性的质量,并展示其在三个深层学习模型结构和三个常见多变时间序列数据集上的性能。