As black box explanations are increasingly being employed to establish model credibility in high-stakes settings, it is important to ensure that these explanations are accurate and reliable. However, prior work demonstrates that explanations generated by state-of-the-art techniques are inconsistent, unstable, and provide very little insight into their correctness and reliability. In addition, these methods are also computationally inefficient, and require significant hyper-parameter tuning. In this paper, we address the aforementioned challenges by developing a novel Bayesian framework for generating local explanations along with their associated uncertainty. We instantiate this framework to obtain Bayesian versions of LIME and KernelSHAP which output credible intervals for the feature importances, capturing the associated uncertainty. The resulting explanations not only enable us to make concrete inferences about their quality (e.g., there is a 95% chance that the feature importance lies within the given range), but are also highly consistent and stable. We carry out a detailed theoretical analysis that leverages the aforementioned uncertainty to estimate how many perturbations to sample, and how to sample for faster convergence. This work makes the first attempt at addressing several critical issues with popular explanation methods in one shot, thereby generating consistent, stable, and reliable explanations with guarantees in a computationally efficient manner. Experimental evaluation with multiple real world datasets and user studies demonstrate that the efficacy of the proposed framework.


翻译:黑盒解释正越来越多地用于在高取量环境中建立模型可信度,因此,必须确保这些解释准确可靠;然而,先前的工作表明,由最新技术产生的解释不一致、不稳定,对正确性和可靠性的洞察力很少;此外,这些方法在计算上也是效率低下,需要大量的超参数调试;在本文件中,我们通过开发一个新颖的贝叶西亚框架来应对上述挑战,以生成本地解释及其相关不确定性;我们即时利用这一框架获取LIME和KernelSHAP的巴耶西亚版本,这些版本为特征的重要性提供可信的间隔,捕捉相关的不确定性;由此产生的解释不仅使我们能够对其质量作出具体的推断(例如,有95%的机会其特征重要性在给定范围内),而且需要高度一致和稳定。我们利用上述不确定性进行详细理论分析,以估计抽样中有多少扰动,以及如何进行抽样,以便更快的趋同。这项工作首次试图解决几个关键问题,同时以最可靠的方式对用户进行可靠的解释,从而用一种精确的方法对数据进行精确的计算,从而用一种精确的方法对用户进行可靠的推算。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
【机器推理可解释性】Machine Reasoning Explainability
专知会员服务
34+阅读 · 2020年9月3日
因果图,Causal Graphs,52页ppt
专知会员服务
241+阅读 · 2020年4月19日
【新书】Python编程基础,669页pdf
专知会员服务
187+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
91+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
100+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
人工智能 | ISAIR 2019诚邀稿件(推荐SCI期刊)
Call4Papers
6+阅读 · 2019年4月1日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
【推荐】TensorFlow手把手CNN实践指南
机器学习研究会
5+阅读 · 2017年8月17日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
8+阅读 · 2021年7月15日
Arxiv
30+阅读 · 2021年7月7日
Arxiv
14+阅读 · 2020年9月1日
Arxiv
12+阅读 · 2019年2月26日
VIP会员
相关VIP内容
【机器推理可解释性】Machine Reasoning Explainability
专知会员服务
34+阅读 · 2020年9月3日
因果图,Causal Graphs,52页ppt
专知会员服务
241+阅读 · 2020年4月19日
【新书】Python编程基础,669页pdf
专知会员服务
187+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
91+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
100+阅读 · 2019年10月9日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
人工智能 | ISAIR 2019诚邀稿件(推荐SCI期刊)
Call4Papers
6+阅读 · 2019年4月1日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
【推荐】TensorFlow手把手CNN实践指南
机器学习研究会
5+阅读 · 2017年8月17日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员