To explain the decision of any model, we extend the notion of probabilistic Sufficient Explanations (P-SE). For each instance, this approach selects the minimal subset of features that is sufficient to yield the same prediction with high probability, while removing other features. The crux of P-SE is to compute the conditional probability of maintaining the same prediction. Therefore, we introduce an accurate and fast estimator of this probability via random Forests for any data $(\boldsymbol{X}, Y)$ and show its efficiency through a theoretical analysis of its consistency. As a consequence, we extend the P-SE to regression problems. In addition, we deal with non-binary features, without learning the distribution of $X$ nor having the model for making predictions. Finally, we introduce local rule-based explanations for regression/classification based on the P-SE and compare our approaches w.r.t other explainable AI methods. These methods are publicly available as a Python package at \url{www.github.com/salimamoukou/acv00}.


翻译:为了解释任何模型的决定,我们扩展了概率充分解释的概念(P-SE ) 。 对于每一种情况,这个方法都选择了最起码的特征子集,这些特征足以产生高概率的同一预测,同时删除其他特征。P-SE的柱石是计算维持同一预测的有条件概率。因此,我们为任何数据(\boldsymbol{X},Y),通过随机森林对这一概率的精确和快速估计值,并通过对其一致性的理论分析来显示其效率。因此,我们将P-SE扩大到回归问题。此外,我们处理非二元特征,不学习X$的分布,也不掌握作出预测的模式。最后,我们根据P-SE对回归/分类采用基于当地规则的解释,并比较我们的方法 w.r.t 其它可解释的AI方法。这些方法在\url{www.github.com/salimamukou/acv00}作为Python包公开提供。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
专知会员服务
14+阅读 · 2021年5月21日
专知会员服务
50+阅读 · 2020年12月14日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
多目标的强化学习教程
CreateAMind
4+阅读 · 2018年1月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2022年1月10日
Arxiv
0+阅读 · 2022年1月9日
Arxiv
0+阅读 · 2022年1月6日
Arxiv
0+阅读 · 2022年1月6日
Arxiv
6+阅读 · 2020年9月29日
Arxiv
5+阅读 · 2017年12月14日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
多目标的强化学习教程
CreateAMind
4+阅读 · 2018年1月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
相关论文
Arxiv
0+阅读 · 2022年1月10日
Arxiv
0+阅读 · 2022年1月9日
Arxiv
0+阅读 · 2022年1月6日
Arxiv
0+阅读 · 2022年1月6日
Arxiv
6+阅读 · 2020年9月29日
Arxiv
5+阅读 · 2017年12月14日
Top
微信扫码咨询专知VIP会员