Modern computational science and engineering applications are being improved by the advances in scientific machine learning. Data-driven methods such as Dynamic Mode Decomposition (DMD) can extract coherent structures from spatio-temporal data generated from dynamical systems and infer different scenarios for said systems. The spatio-temporal data comes as snapshots containing spatial information for each time instant. In modern engineering applications, the generation of high-dimensional snapshots can be time and/or resource-demanding. In the present study, we consider two strategies for enhancing DMD workflow in large numerical simulations: (i) snapshots compression to relieve disk pressure; (ii) the use of in situ visualization images to reconstruct the dynamics (or part of) in runtime. We evaluate our approaches with two 3D fluid dynamics simulations and consider DMD to reconstruct the solutions. Results reveal that snapshot compression considerably reduces the required disk space. We have observed that lossy compression reduces storage by almost $50\%$ with low relative errors in the signal reconstructions and other quantities of interest. We also extend our analysis to data generated on-the-fly, using in-situ visualization tools to generate image files of our state vectors during runtime. On large simulations, the generation of snapshots may be slow enough to use batch algorithms for inference. Streaming DMD takes advantage of the incremental SVD algorithm and updates the modes with the arrival of each new snapshot. We use streaming DMD to reconstruct the dynamics from in-situ generated images. We show that this process is efficient, and the reconstructed dynamics are accurate.
翻译:现代计算科学和工程应用正在通过科学机器学习的进步而得到改进。动态模式分解(DMD)等数据驱动方法可以从动态系统产生的时空数据中提取连贯的结构,并从动态系统产生的时空数据中提取一致的结构。 时空数据以每瞬间包含空间信息的快照形式出现。 在现代工程应用中, 生成高维快照可以是时间和/ 或资源需求。 在本研究中, 我们考虑在大型数字模拟中加强DMD工作流程的两个战略:(一) 缩影以缓解磁盘压力;(二) 使用现场可视化图像在运行时重建动态( 或部分) 。 我们用2个3D流动态模拟来评估我们的方法, 并考虑DMD来重建解决方案。 结果表明,在现代工程应用程序中, 光速压缩可以大大减少所需的磁盘空间。 我们观察到, 损失压缩将存储量减少近50美元, 信号重建中的相对错误和其他感兴趣的数量。 我们还将我们的分析扩大到了在飞行上产生的数据, 使用Slight- 正在生成的动态变现变动的图像工具, 以生成的快速的Staimalalalalizalizalation 。在生成中, 在生成中, 在生成的每个变现变现变现的变压过程中, 以生成中, 以生成的机变变变变变变变法中, 以生成的变变变变变变变变变变变的变的变的变的变法中, 以生成的变法中, 以生成的机机机机算法中, 以生成的变法可以显示的变法 。