It is intuitive that NLP tasks for logographic languages like Chinese should benefit from the use of the glyph information in those languages. However, due to the lack of rich pictographic evidence in glyphs and the weak generalization ability of standard computer vision models on character data, an effective way to utilize the glyph information remains to be found. In this paper, we address this gap by presenting Glyce, the glyph-vectors for Chinese character representations. We make three major innovations: (1) We use historical Chinese scripts (e.g., bronzeware script, seal script, traditional Chinese, etc) to enrich the pictographic evidence in characters; (2) We design CNN structures (called tianzege-CNN) tailored to Chinese character image processing; and (3) We use image-classification as an auxiliary task in a multi-task learning setup to increase the model's ability to generalize. We show that glyph-based models are able to consistently outperform word/char ID-based models in a wide range of Chinese NLP tasks. We are able to set new state-of-the-art results for a variety of Chinese NLP tasks, including tagging (NER, CWS, POS), sentence pair classification, single sentence classification tasks, dependency parsing, and semantic role labeling. For example, the proposed model achieves an F1 score of 80.6 on the OntoNotes dataset of NER, +1.5 over BERT; it achieves an almost perfect accuracy of 99.8\% on the Fudan corpus for text classification. Code found at https://github.com/ShannonAI/glyce.
翻译:对于像中文这样的逻辑语言来说,NLP的任务应该从使用这些语言的胶片信息中受益,这是直观的。然而,由于在格字中缺乏丰富的象形学证据,而且标准计算机视觉模型在字符数据方面一般化能力薄弱,因此仍然无法找到一种有效的方法来利用格字信息。在本文中,我们通过展示Glyce, 用于中文字符表达的胶片驱动器来弥补这一差距。我们做了三大创新:(1) 我们使用历史中国文字(例如,青铜软件脚本、海豹脚本、传统中文等)来丰富字符中的象形证据;(2) 我们设计了CNN结构(称为tianzege-CNN),以中国字符图像处理为定制;(3) 我们用图像分类作为多功能学习的辅助任务,以提高模型的概括能力。我们显示,基于Glyph的模型能够在中国NLPOP任务的广泛范围中,以词型/字符基模型为基础的模型中,在Serveal Serg Seral 任务中可以实现一种新状态的词/字符分类。我们得以在NLPO 的N-Seral-Seal 的排序中,在NCSeral 上找到一个新的C-dal-dal-dal-dal-lexxxx 的标记,在N-dal 上找到一个新的标记,一个新的标记的标记的标记,一个新的标记的标记的标记。