Symbol detection is a fundamental and challenging problem in modern communication systems, e.g., multiuser multiple-input multiple-output (MIMO) setting. Iterative Soft Interference Cancellation (SIC) is a state-of-the-art method for this task and recently motivated data-driven neural network models, e.g. DeepSIC, that can deal with unknown non-linear channels. However, these neural network models require thorough timeconsuming training of the networks before applying, and is thus not readily suitable for highly dynamic channels in practice. We introduce an online training framework that can swiftly adapt to any changes in the channel. Our proposed framework unifies the recent deep unfolding approaches with the emerging generative adversarial networks (GANs) to capture any changes in the channel and quickly adjust the networks to maintain the top performance of the model. We demonstrate that our framework significantly outperforms recent neural network models on highly dynamic channels and even surpasses those on the static channel in our experiments.
翻译:在现代通信系统,例如多用户多投入多产出(MIMO)的设置中,探测符号是一个根本性和具有挑战性的问题。迭代软干预取消(SIC)是完成这项任务的最先进方法和最近驱动的数据驱动神经网络模型,例如深海SIC,可以处理未知的非线性渠道。然而,这些神经网络模型在应用之前需要对网络进行耗时透彻的培训,因此不适于高度动态的渠道。我们引入了一个在线培训框架,可以迅速适应频道的任何变化。我们提议的框架将最近深入展开的做法与新兴的基因对抗网络(GANs)结合起来,以捕捉频道中的任何变化,并迅速调整网络以保持模型的顶级性能。我们证明,我们的框架大大超越了在高度动态的频道上最近的神经网络模型,甚至超过了我们实验中静态频道上的那些模型。