Recent developments in data acquisition technology allow us to collect 3D texture meshes quickly. Those can help us understand and analyse the urban environment, and as a consequence are useful for several applications like spatial analysis and urban planning. Semantic segmentation of texture meshes through deep learning methods can enhance this understanding, but it requires a lot of labelled data. The contributions of this work are threefold: (1) a new benchmark dataset of semantic urban meshes, (2) a novel semi-automatic annotation framework, and (3) an annotation tool for 3D meshes. In particular, our dataset covers about 4 km2 in Helsinki (Finland), with six classes, and we estimate that we save about 600 hours of labelling work using our annotation framework, which includes initial segmentation and interactive refinement. We also compare the performance of several state-of-theart 3D semantic segmentation methods on the new benchmark dataset. Other researchers can use our results to train their networks: the dataset is publicly available, and the annotation tool is released as open-source.
翻译:数据获取技术的近期发展使我们能够快速收集 3D 纹理 meshes 。 这些可以帮助我们理解和分析城市环境,因此对空间分析和城市规划等若干应用有用。 通过深层学习方法对纹理符号进行语义分割可以加强这种理解,但它需要大量贴标签的数据。 这项工作的贡献有三重:(1) 一个新的城市语义符号基准数据集,(2) 一个新的半自动批注框架,(3) 3Dmeshes的注解工具。 特别是,我们的数据集覆盖赫尔辛基(芬兰)的大约4平方公里,分六类。 我们估计,我们用我们的注解框架节省了大约600小时的标签工作,其中包括初始分解和互动改进。 我们还比较了新基准数据集中若干状态的3D语义分割方法的绩效。 其它研究人员可以使用我们的成果来培训他们的网络: 数据集是公开的,说明工具作为公开来源发布。