Aiming at objective early detection of neuromotor disorders such as cerebral palsy, we proposed an innovative non-intrusive approach using a pressure sensing device to classify infant general movements (GMs). Here, we tested the feasibility of using pressure data to differentiate typical GM patterns of the ''fidgety period'' (i.e., fidgety movements) vs. the ''pre-fidgety period'' (i.e., writhing movements). Participants (N = 45) were sampled from a typically-developing infant cohort. Multi-modal sensor data, including pressure data from a 32x32-grid pressure sensing mat with 1024 sensors, were prospectively recorded for each infant in seven succeeding laboratory sessions in biweekly intervals from 4-16 weeks of post-term age. For proof-of-concept, 1776 pressure data snippets, each 5s long, from the two targeted age periods were taken for movement classification. Each snippet was pre-annotated based on corresponding synchronised video data by human assessors as either fidgety present (FM+) or absent (FM-). Multiple neural network architectures were tested to distinguish the FM+ vs. FM- classes, including support vector machines (SVM), feed-forward networks (FFNs), convolutional neural networks (CNNs), and long short-term memory (LSTM) networks. The CNN achieved the highest average classification accuracy (81.4%) for classes FM+ vs. FM-. Comparing the pros and cons of other methods aiming at automated GMA to the pressure sensing approach, we concluded that the pressure sensing approach has great potential for efficient large-scale motion data acquisition and sharing. This will in return enable improvement of the approach that may prove scalable for daily clinical application for evaluating infant neuromotor functions.


翻译:旨在目标性地早期检测脑瘫等神经发育障碍,本文提出了一种创新的非侵入性方法,采用压力传感器进行婴儿的总体运动分类。本文测试了利用压力数据区分”抽搐期“(即抽搐运动)与”抽搐前期“(即扭动运动)两个时间段内典型的总体运动模式的可行性。参与者(N=45)来自一个典型的婴儿队列研究。对于每位婴儿,在4-16周的实足年龄之间的两周间隔内,连续进行了七个实验室会话,记录了多模式传感器数据,包括来自32x32栅格压力传感垫的1024个传感器的压力数据。作为概念验证,从两个目标年龄段中取出1776个压力数据片段,每个片段长达5秒,用于运动分类。每个片段基于相应的同步视频数据由人为评定者进行预注释,标记为有抽搐运动(FM+)或无抽搐运动(FM-)。测试了多种神经网络体系结构来区分FM+和FM-类别,包括支持向量机(SVM)、前向网络(FFN)、卷积神经网络(CNN)和长短期记忆(LSTM)网络。CNN对于类别FM+和FM-实现了最高平均分类准确率(81.4%)。比较其他旨在自动化GMAs的方法的优缺点并与压力传感方法进行比较,我们得出结论,压力传感方法具有实现高效运动数据采集和共享的巨大潜力。这将进而使改进的方法得以证明,从而证明其可扩展性,用于评估婴儿神经运动功能的日常临床应用。

0
下载
关闭预览

相关内容

FM 2019是正式方法欧洲(FME)组织的系列国际研讨会中的第23次,该协会是一个独立的协会,旨在促进软件开发正式方法的使用和研究。官网链接:http://formalmethods2019.inesctec.pt/?page_id=565
《校准自主性中的信任》2022最新16页slides
专知会员服务
19+阅读 · 2022年12月7日
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
谷歌&HuggingFace| 零样本能力最强的语言模型结构
夕小瑶的卖萌屋
0+阅读 · 2022年6月23日
RoBERTa中文预训练模型:RoBERTa for Chinese
PaperWeekly
57+阅读 · 2019年9月16日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年6月1日
Arxiv
15+阅读 · 2022年1月24日
Object Detection in 20 Years: A Survey
Arxiv
48+阅读 · 2019年5月13日
VIP会员
相关VIP内容
《校准自主性中的信任》2022最新16页slides
专知会员服务
19+阅读 · 2022年12月7日
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
相关资讯
谷歌&HuggingFace| 零样本能力最强的语言模型结构
夕小瑶的卖萌屋
0+阅读 · 2022年6月23日
RoBERTa中文预训练模型:RoBERTa for Chinese
PaperWeekly
57+阅读 · 2019年9月16日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员