In this feasibility study, we have implemented a recently proposed partially linear multiuser detection algorithm in reproducing kernel Hilbert spaces (RKHSs) on a GPU-accelerated platform. Partially linear multiuser detection, which combines the robustness of linear detection with the power of nonlinear methods, has been proposed for a massive connectivity scenario with the non-orthogonal multiple access (NOMA). This is a promising approach, but detecting payloads within a received orthogonal frequency division multiplexing (OFDM) radio frame requires the execution of a large number of inner product operations, which are the main computational burden of the algorithm. Although inner-product operations consist of simple kernel evaluations, their vast number poses a challenge in ultra-low latency (ULL) applications, because the time needed for computing the inner products might exceed the sub-millisecond latency requirement. To address this problem, this study demonstrates the acceleration of the inner-product operations through massive parallelization. The result is a GPU-accelerated real-time OFDM receiver that enables sub-millisecond latency detection to meet the requirements of 5th generation (5G) and beyond ultra-reliable and low latency communications (URLLC) systems. Moreover, the parallelization and acceleration techniques explored and demonstrated in this study can be extended to many other signal processing algorithms in Hilbert spaces, such as those based on projection onto convex sets (POCS) and adaptive projected subgradient method (APSM) algorithms. Experimental results and comparisons with the state-of-art confirm the effectiveness of our techniques.


翻译:在这一可行性研究中,我们实施了最近提出的在GPU加速平台上复制核心Hilbert空间(RKHSs)的局部线性多用户检测算法。部分线性多用户检测算法,将线性检测的稳健性与非线性方法的力量结合起来,是为大规模连通情景和非横向多重访问(NOMA)提出的。这是一个很有希望的方法,但在接收或分频多重重叠(OFDM)无线电框架内检测有效载荷需要执行大量内部产品操作,这是算法的主要计算负担。虽然内产品操作包括简单的内核评估,但是其大量多用户检测在超低线性拉特度(ULLL)应用中构成挑战,因为计算内产所需的时间可能超过二级通量要求。为解决这一问题,这项研究表明,通过大规模平行平行化(GPU-加速实时DM接收器)的实时实时接收器,从而使得亚线性内核电解(5级平流率快速度测试)的快速度和快速递增速度技术满足了(LiLial-CS)的预测(Listral-Lialal-de)的预测,这些超快化技术的预测(5-Lial-Lial-lavical-Lial-Lial-Lislation-assilal-de)的快速探测和高级技术的预测,这些技术的预测的预测的预测的预测的预测的预测,可以满足了。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员