Diffusion models are a class of generative models, showing superior performance as compared to other generative models in creating realistic images when trained on natural image datasets. We introduce DISPR, a diffusion-based model for solving the inverse problem of three-dimensional (3D) cell shape prediction from two-dimensional (2D) single cell microscopy images. Using the 2D microscopy image as a prior, DISPR is conditioned to predict realistic 3D shape reconstructions. To showcase the applicability of DISPR as a data augmentation tool in a feature-based single cell classification task, we extract morphological features from the cells grouped into six highly imbalanced classes. Adding features from predictions of DISPR to the three minority classes improved the macro F1 score from $F1_\text{macro} = 55.2 \pm 4.6\%$ to $F1_\text{macro} = 72.2 \pm 4.9\%$. With our method being the first to employ a diffusion-based model in this context, we demonstrate that diffusion models can be applied to inverse problems in 3D, and that they learn to reconstruct 3D shapes with realistic morphological features from 2D microscopy images.
翻译:传播模型是一组基因模型,显示在自然图像数据集培训时,在创造现实图像方面与其他基因模型相比,其性能优于其他基因模型。我们引入了DISPR,这是一个基于扩散的模型,用二维(2D)单细胞显微镜图像解决三维(3D)细胞形状预测的反问题。使用2D显微镜图像,DISPR有条件地预测现实的3D形状重建。为了展示DISPR作为基于地貌的单一细胞分类任务中数据增强工具的适用性,我们从分类的细胞中提取形态特征,分为六个高度不平衡的类别。从DISPR预测中添加三个少数群体类别的特征,使宏观F1评分从$1 ⁇ text{macro}=55.2\pm 4.6 ⁇ 美元到$F1 ⁇ text{macro}=72.2\pm 4.9 ⁇ 美元。我们的方法是首先在这种背景下使用一个基于传播的模型,我们证明传播模型可以适用于3D的反向问题,并且从3D图像中学习重建3D形状。