In this article, we introduce a kernel-based consensual aggregation method for regression problems. We aim to flexibly combine individual regression estimators $r_1, r_2, \ldots, r_M$ using a weighted average where the weights are defined based on some kernel function to build a target prediction. This work extends the context of Biau et al. (2016) to a more general kernel-based framework. We show that this more general configuration also inherits the consistency of the basic consistent estimators. Moreover, an optimization method based on gradient descent algorithm is proposed to efficiently and rapidly estimate the key parameter of the strategy. The numerical experiments carried out on several simulated and real datasets are also provided to illustrate the speed-up of gradient descent algorithm in estimating the key parameter and the improvement of overall performance of the method with the introduction of smoother kernel functions.
翻译:在本篇文章中,我们引入了一个基于内核的回归问题共识汇总方法。 我们的目标是使用加权平均值灵活地将个人回归估计值($r_1, r_2, rldots, r_M$)组合在一起, 如果加权平均值是根据某些内核函数确定的, 以建立目标预测。 这项工作将Biau等人( et al( )) 的背景扩展至一个更一般性的内核框架。 我们显示,这种更为笼统的配置还继承了基本一致的测算器的一致性。 此外, 还提议了一种基于梯度下沉算法的优化方法, 以高效和快速地估算战略的关键参数。 还在几个模拟和实际数据集上进行了数字实验, 以说明在估算关键参数时梯度下降算法的加速性, 以及采用滑动内核函数后方法的总体性改进。