Differential phase contrast (DPC) imaging plays an important role in the family of quantitative phase measurement. However, the reconstruction algorithm for quantitative DPC (qDPC) imaging is not yet optimized, as it does not incorporate the inborn properties of qDPC imaging. In this research, we propose a simple but effective image prior, the dark-field sparse prior (DSP), to facilitate the phase reconstruction quality for all DPC-based phase reconstruction algorithms. The DSP is based on the key observation that most pixel values for an idea differential phase contrast image are zeros since the subtraction of two images under anti-symmetric illumination cancels all background components. With this DSP prior, we formed a new cost function in which L0-norm was used to represent the DSP. Further, we developed two different algorithms based on (1) the Half Quadratic Splitting, and (2) the Richardson-Lucy deconvolution to solve this NP-hard L0-norm problem. We tested our new model on both simulated and experimental data and compare against state-of-the-art methods including L2-norm and total variation regularizations. Results show that our proposed model is superior in terms of phase reconstruction quality and implementation efficiency, in which it significantly increases the experimental robustness, while maintaining the data fidelity.
翻译:差异阶段对比(DPC)成像(DPC)在定量阶段测量体系中起着重要作用。然而,定量 DPC(qDPC)成像的重建算法尚未优化,因为它没有包含 qDPC 成像的内在特性。在这个研究中,我们提出了一个简单而有效的图像,在之前,暗地稀疏之前(DSP),为基于DPC的所有阶段重建算法的阶段重建质量提供了便利。DSP基于以下关键观察,即思想差异阶段对比图像的大多数像素值是零,因为在反对称光照下两个图像的减值取消所有背景组成部分。在DSP之前,我们形成了一个新的成本函数,在这个函数中,L0-诺姆被用来代表DSP。此外,我们开发了两种不同的算法,其基础是:(1)半二次二次二次二次二次二次二次二次二次二次夸德分裂,以及(2) Richardson-Lucy的演算法,目的是解决这个硬度L0-norm问题。我们测试了我们的模拟和实验性模型的新模型,比对状态模型的所有背景组成部分都显示高度的升级性数据,同时展示了整个周期性数据质量。