This paper studies the problem of time series forecasting (TSF) from the perspective of compressed sensing. First of all, we convert TSF into a more inclusive problem called tensor completion with arbitrary sampling (TCAS), which is to restore a tensor from a subset of its entries sampled in an arbitrary manner. While it is known that, in the framework of Tucker low-rankness, it is theoretically impossible to identify the target tensor based on some arbitrarily selected entries, in this work we shall show that TCAS is indeed tackleable in the light of a new concept called convolutional low-rankness, which is a generalization of the well-known Fourier sparsity. Then we introduce a convex program termed Convolution Nuclear Norm Minimization (CNNM), and we prove that CNNM succeeds in solving TCAS as long as a sampling condition--which depends on the convolution rank of the target tensor--is obeyed. This theory provides a meaningful answer to the fundamental question of what is the minimum sampling size needed for making a given number of forecasts. Experiments on univariate time series, images and videos show encouraging results.
翻译:本文从压缩感测的角度研究时间序列预测问题。 首先,我们将TSF转换成一个更包容的问题,称为通过任意抽样(TCAS),即通过任意抽样(TCAS)从一个子集的条目样本中恢复一个分数。虽然众所周知,在塔克低级框架内,理论上不可能根据某些任意选择的条目确定目标分数,但在这项工作中,我们将表明,TCS确实可以在一个称为“共产低级别”的新概念下进行处理,这个概念是众所周知的四面形宽度的概括化。然后,我们推出一个称为Convolution Norm 最小化(CNNM)的convex方案,我们证明CNNM在解决TCAS成功,只要其取样条件取决于目标数控点的卷级。这一理论为预测所需最低采样规模这一基本问题提供了有意义的答案。 实验了非动态时间序列、图像和视频显示令人鼓舞的结果。