We study entanglement-related properties of random quantum states which are unitarily invariant, in the sense that their distribution is left unchanged by conjugation with arbitrary unitary operators. In the large matrix size limit, the distribution of these random quantum states is characterized by their limiting spectrum, a compactly supported probability distribution. We prove several results characterizing entanglement and the PPT property of random bipartite unitarily invariant quantum states in terms of the limiting spectral distribution, in the unbalanced asymptotical regime where one of the two subsystems is fixed, while the other one grows in size.
翻译:我们研究的是随机量子状态的纠缠相关特性,这些分量状态的分差因与任意的单体操作员的混和而保持不变。 在巨大的矩阵大小限制中,这些随机量子的分布特征是其限制频谱,一种靠紧密支持的概率分布。 我们证明,从限制光谱分布的角度来看,在两种子系之一固定的不平衡的无现时制度下,这些分量状态的分差和随机双分体单体不变化量子体的PPPT属性,其特征是分差和随机单体不变化量子的分差属性,而另一种则在规模上增长。