Protein structure prediction helps to understand gene translation and protein function, which is of growing interest and importance in structural biology. The AlphaFold model, which used transformer architecture to achieve atomic-level accuracy in protein structure prediction, was a significant breakthrough. However, training and inference of the AlphaFold model are challenging due to its high computation and memory cost. In this work, we present FastFold, an efficient implementation of AlphaFold for both training and inference. We propose Dynamic Axial Parallelism and Duality Async Operations to improve the scaling efficiency of model parallelism. Besides, AutoChunk is proposed to reduce memory cost by over 80% during inference by automatically determining the chunk strategy. Experimental results show that FastFold reduces overall training time from 11 days to 67 hours and achieves 7.5X - 9.5X speedup for long-sequence inference. Furthermore, we scale FastFold to 512 GPUs and achieve an aggregate throughput of 6.02 PetaFLOP/s with 90.1% parallel efficiency.


翻译:蛋白质结构预测有助于理解基因翻译和蛋白质功能,这对结构生物学越来越感兴趣,也越来越重要。阿尔法福德模型使用变压器结构来实现蛋白质结构预测中的原子级精确度,这是一个重大突破。然而,阿尔法福德模型的培训和推论因其高计算和记忆成本而具有挑战性。在这项工作中,我们介绍了FastFold,一个高效实施阿尔法Fold,用于培训和推断;我们提议动态轴平行和Dlegal Async操作,以提高模型平行的效率。此外,AutoChunk提议通过自动确定块战略,在推断过程中将内存成本减少80%以上。实验结果表明,FastFold将总体培训时间从11天减少到67小时,并实现了7.5X-9.5X速度,用于长期序列推断。此外,我们将快速Fold提高到512 GPPUPS, 并实现6.02 PetaFLOP/s的总吞吐量,同时达到90.1 %。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
71+阅读 · 2022年6月28日
【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
115+阅读 · 2022年4月21日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
57+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
149+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
Hierarchically Structured Meta-learning
CreateAMind
24+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Neural Architecture Search without Training
Arxiv
10+阅读 · 2021年6月11日
VIP会员
相关VIP内容
相关资讯
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
Hierarchically Structured Meta-learning
CreateAMind
24+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员