Intent classification is a fundamental task in the spoken language understanding field that has recently gained the attention of the scientific community, mainly because of the feasibility of approaching it with end-to-end neural models. In this way, avoiding using intermediate steps, i.e. automatic speech recognition, is possible, thus the propagation of errors due to background noise, spontaneous speech, speaking styles of users, etc. Towards the development of solutions applicable in real scenarios, it is interesting to investigate how environmental noise and related noise reduction techniques to address the intent classification task with end-to-end neural models. In this paper, we experiment with a noisy version of the fluent speech command data set, combining the intent classifier with a time-domain speech enhancement solution based on Wave-U-Net and considering different training strategies. Experimental results reveal that, for this task, the use of speech enhancement greatly improves the classification accuracy in noisy conditions, in particular when the classification model is trained on enhanced signals.


翻译:在口语理解领域,本意分类是一项基本任务,最近已引起科学界的注意,这主要是因为以端到端神经模型接近它的可行性。这样,就有可能避免使用中间步骤,即自动语音识别,从而传播因背景噪音、自发语音、用户说话风格等造成的错误。 在制定适用于真实情况的解决方案时,研究环境噪音和相关的减少噪音技术如何用端到端神经模型来处理意图分类任务。在本文件中,我们试验了流利语音指令数据集的响亮版本,将意图分类器与基于Wave-U-Net的时空语音增强解决方案相结合,并考虑不同的培训战略。实验结果表明,为开展这项工作,使用增强语音的方法可大大提高噪音条件下的分类准确性,特别是在对分类模型进行增强信号的培训时。</s>

0
下载
关闭预览

相关内容

机器学习系统设计系统评估标准
多标签学习的新趋势(2020 Survey)
专知会员服务
41+阅读 · 2020年12月6日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年5月1日
Arxiv
12+阅读 · 2019年2月28日
A Survey on Deep Transfer Learning
Arxiv
11+阅读 · 2018年8月6日
VIP会员
相关VIP内容
多标签学习的新趋势(2020 Survey)
专知会员服务
41+阅读 · 2020年12月6日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
相关基金
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员