Advanced volumetric imaging methods and genetically encoded activity indicators have permitted a comprehensive characterization of whole brain activity at single neuron resolution in \textit{Caenorhabditis elegans}. The constant motion and deformation of the mollusc nervous system, however, impose a great challenge for a consistent identification of densely packed neurons in a behaving animal. Here, we propose a cascade solution for long-term and rapid recognition of head ganglion neurons in a freely moving \textit{C. elegans}. First, potential neuronal regions from a stack of fluorescence images are detected by a deep learning algorithm. Second, 2 dimensional neuronal regions are fused into 3 dimensional neuron entities. Third, by exploiting the neuronal density distribution surrounding a neuron and relative positional information between neurons, a multi-class artificial neural network transforms engineered neuronal feature vectors into digital neuronal identities. Under the constraint of a small number (20-40 volumes) of training samples, our bottom-up approach is able to process each volume - $1024 \times 1024 \times 18$ in voxels - in less than 1 second and achieves an accuracy of $91\%$ in neuronal detection and $74\%$ in neuronal recognition. Our work represents an important development towards a rapid and fully automated algorithm for decoding whole brain activity underlying natural animal behaviors.
翻译:高级体积成像法和基因编码活动指标使得能够以单神经分辨率在\ textit{Caenorhabeditis elegans} 中对整个大脑活动进行全面定性。软体神经系统的持续运动和变形对持续识别一个行为良好的动物体内密集包装的神经神经元构成巨大挑战。在这里,我们提出了一个长期和快速识别自由移动的神经编织神经元的长期和快速识别解决方案。首先,通过深层学习算法检测出一堆荧光图像中的潜在神经神经区域。第二,2维神经区域被整合到3维神经实体中。第三,通过利用围绕神经元之间神经和相对位置信息的神经密度分布,一个多级人工神经网络将工程神经特征矢量转换成数字神经元特性身份。在少量培训样本(20-40卷)的制约下,我们的底部方法能够处理每一卷——1024\时间到1024年的神经值,在1024年的神经直径上,在18年的直径的神经直径上,在1024年的直径的直径的直径上,在18年的直径的直径上,在18年的直径的直径上,在18年的直径的直径的神经的直径中,在18年的直径的直径的直的直的直的直中,在18年的直径上,在18年的直的直的神经的直径的直径中,在18年的直的直径上,在18年的直径上,完全的直线上。