We propose DeepMetaHandles, a 3D conditional generative model based on mesh deformation. Given a collection of 3D meshes of a category and their deformation handles (control points), our method learns a set of meta-handles for each shape, which are represented as combinations of the given handles. The disentangled meta-handles factorize all the plausible deformations of the shape, while each of them corresponds to an intuitive deformation. A new deformation can then be generated by sampling the coefficients of the meta-handles in a specific range. We employ biharmonic coordinates as the deformation function, which can smoothly propagate the control points' translations to the entire mesh. To avoid learning zero deformation as meta-handles, we incorporate a target-fitting module which deforms the input mesh to match a random target. To enhance deformations' plausibility, we employ a soft-rasterizer-based discriminator that projects the meshes to a 2D space. Our experiments demonstrate the superiority of the generated deformations as well as the interpretability and consistency of the learned meta-handles.


翻译:我们建议使用基于网状变形的3D条件基因模型DeepMetaHandles。 根据一个3D类的3D网格及其变形控控控器(控制点)的集合, 我们的方法为每个形状学习一组元手, 以给定控管的组合形式表示。 分解的元手将形状的所有貌似变形都成分形, 而每个形状都对应直觉变形。 然后, 通过在特定范围内取样元手的系数, 就可以产生一种新的变形。 我们使用双调坐标作为变形函数, 它可以将控制点的翻译顺利地传播到整个网格中。 为避免将零变形作为给定控控控控器的组合来学习, 我们采用了一个适合目标的模块, 使输入网形变形变形变形与随机目标相匹配。 为了增强变形的直观性, 我们使用一个基于软色分析器的制导法, 将模投射到2D空间。 我们的实验显示生成变形的变形的优越性, 以及所学的元图的可解释性和一致性。

0
下载
关闭预览

相关内容

【课程推荐】 深度学习中的几何(Geometry of Deep Learning)
专知会员服务
58+阅读 · 2019年11月10日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
「Awesome」3D机器学习资源汇总
专知
7+阅读 · 2019年3月14日
(Python)3D人脸处理工具Face3d
AI研习社
7+阅读 · 2019年2月10日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
python数据分析师面试题选
数据挖掘入门与实战
6+阅读 · 2017年11月21日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
【推荐】SLAM相关资源大列表
机器学习研究会
10+阅读 · 2017年8月18日
【学习】CVPR 2017 Tutorial:如何从图像来构建3D模型
机器学习研究会
6+阅读 · 2017年8月8日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
VIP会员
相关资讯
「Awesome」3D机器学习资源汇总
专知
7+阅读 · 2019年3月14日
(Python)3D人脸处理工具Face3d
AI研习社
7+阅读 · 2019年2月10日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
python数据分析师面试题选
数据挖掘入门与实战
6+阅读 · 2017年11月21日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
【推荐】SLAM相关资源大列表
机器学习研究会
10+阅读 · 2017年8月18日
【学习】CVPR 2017 Tutorial:如何从图像来构建3D模型
机器学习研究会
6+阅读 · 2017年8月8日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
Top
微信扫码咨询专知VIP会员