3D object detection from LiDAR data for autonomous driving has been making remarkable strides in recent years. Among the state-of-the-art methodologies, encoding point clouds into a bird's eye view (BEV) has been demonstrated to be both effective and efficient. Different from perspective views, BEV preserves rich spatial and distance information between objects. Yet, while farther objects of the same type do not appear smaller in the BEV, they contain sparser point cloud features. This fact weakens BEV feature extraction using shared-weight convolutional neural networks (CNNs). In order to address this challenge, we propose Range-Aware Attention Network (RAANet), which extracts effective BEV features and generates superior 3D object detection outputs. The range-aware attention (RAA) convolutions significantly improve feature extraction for near as well as far objects. Moreover, we propose a novel auxiliary loss for point density estimation to further enhance the detection accuracy of RAANet for occluded objects. It is worth to note that our proposed RAA convolution is lightweight and compatible to be integrated into any CNN architecture used for detection from a BEV. Extensive experiments on the nuScenes and KITTI datasets demonstrate that our proposed approach outperforms the state-of-the-art methods for LiDAR-based 3D object detection, with real-time inference speed of 16 Hz for the full version and 22 Hz for the lite version tested on nuScenes lidar frames. The code is publicly available at our Github repository https://github.com/erbloo/RAAN.
翻译:从LIDAR数据中检测自动驱动的3D物体近年来取得了显著进步。 在最新的方法中,将点云编码成鸟眼视图(BEV)被证明是有效和高效的。不同的观点认为,BEV保存了不同对象之间丰富的空间和距离信息。尽管BEV中同一类型的更远对象在BEV中并不显得更小,但它们含有较稀疏的点云特征。这一事实通过共享重量的卷心神经神经网络(CNNs)削弱了BEV特征的提取。为了应对这一挑战,我们提议了RAAA注意网络(RAANet),它提取了有效的BEV功能,并生成了3D对象探测的高级输出结果。从视野角度看,BEV中大大改进了近距离物体的特征提取。此外,我们提议对点密度估计进行新的辅助性损失,以进一步提高RAANet对隐蔽物体的编码准确度。值得注意的是,我们提议的RAACOVER值变异,可以与任何CNNAR目标结构整合,用于从BEV/LEVS的完整速度测试方法。关于我们的拟议的AS-CAR-RARC-LA-LA-LA-LA-LA-LEAR-LA-LA-LA-IAR-LA-LA-LA-LA-LAT-LVA-LA-LA-LA-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-IAR-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-RVD-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S