Quality-of-Service prediction of web service is an integral part of services computing due to its diverse applications in the various facets of a service life cycle, such as service composition, service selection, service recommendation. One of the primary objectives of designing a QoS prediction algorithm is to achieve satisfactory prediction accuracy. However, accuracy is not the only criteria to meet while developing a QoS prediction algorithm. The algorithm has to be faster in terms of prediction time so that it can be integrated into a real-time recommendation or composition system. The other important factor to consider while designing the prediction algorithm is scalability to ensure that the prediction algorithm can tackle large-scale datasets. The existing algorithms on QoS prediction often compromise on one goal while ensuring the others. In this paper, we propose a semi-offline QoS prediction model to achieve three important goals simultaneously: higher accuracy, faster prediction time, scalability. Here, we aim to predict the QoS value of service that varies across users. Our framework consists of multi-phase prediction algorithms: preprocessing-phase prediction, online prediction, and prediction using the pre-trained model. In the preprocessing phase, we first apply multi-level clustering on the dataset to obtain correlated users and services. We then preprocess the clusters using collaborative filtering to remove the sparsity of the given QoS invocation log matrix. Finally, we create a two-staged, semi-offline regression model using neural networks to predict the QoS value of service to be invoked by a user in real-time. Our experimental results on four publicly available WS-DREAM datasets show the efficiency in terms of accuracy, scalability, fast responsiveness of our framework as compared to the state-of-the-art methods.
翻译:网络服务服务质量预测是服务计算的一个组成部分。 服务质量预测是服务计算的一个组成部分, 因为它在服务生命周期的各个方面, 如服务构成、服务选择、服务建议等, 服务质量预测是服务计算的一个组成部分。 设计QOS预测算法的首要目标之一是实现令人满意的预测准确性。 然而, 准确性并不是在开发QOS预测算法的同时满足的唯一标准。 在预测时间方面, 算法必须更快, 以便将其纳入实时建议或组成系统。 在设计预测算法时需要考虑的另一个重要因素是确保预测算法具有可缩放性, 以确保预测算法能够解决大规模数据集。 QOS预测现有算法常常在一个目标上妥协, 同时确保其他目标。 在本文中, 我们提议半关闭QOS预测模型, 同时实现三个重要目标: 更高的准确性, 更快的预测时间, 缩放速度。 在这里, 我们的目标是预测所提供的QOS服务的质量, 我们的多阶段预值预测算法是: 我们的预处理阶段预测, 在线预测, 并且预测使用CARC前的用户 。 在最后的实验室模型中, 我们的用户 将A.