Non-probability survey samples are examples of data sources that have become increasingly popular in recent years, also in official statistics. However, statistical inference based on non-probability samples is much more difficult because they are biased and are not representative of the target population (Wu, 2022). In this paper we consider a method of joint calibration for totals (Deville & S\"arndal, 1992) and quantiles (Harms & Duchesne, 2006) and use the proposed approach to extend existing inference methods for non-probability samples, such as inverse probability weighting, mass imputation and doubly robust estimators. By including quantile information in the estimation process non-linear relationships between the target and auxiliary variables can be approximated the way it is done in step-wise (constant) regression. Our simulation study has demonstrated that the estimators in question are more robust against model mis-specification and, as a result, help to reduce bias and improve estimation efficiency. Variance estimation for our proposed approach is also discussed. We show that existing inference methods can be used and that the resulting confidence intervals are at nominal levels. Finally, we applied the proposed methods to estimate the share of vacancies aimed at Ukrainian workers in Poland using an integrated set of administrative and survey data about job vacancies. The proposed approaches have been implemented in two R packages (nonprobsvy and jointCalib), which were used to conduct the simulation and empirical study
翻译:暂无翻译