One of the main concerns about fairness in machine learning (ML) is that, in order to achieve it, one may have to renounce to some accuracy. Having this trade-off in mind, Hardt et al. have proposed the notion of equal opportunities (EO), designed so as to be compatible with accuracy. In fact, it can be shown that if the source of input data is deterministic, the two notions go well along with each other. In the probabilistic case, however, things change. As we show, there are probabilistic data sources for which EO can only be achieved at the total detriment of accuracy, i.e. among the models that achieve EO, those whose prediction does not depend on the input have the highest accuracy.


翻译:对机器学习公平性的主要关切之一是,为了实现这种公平性,人们可能不得不放弃某种准确性。考虑到这种权衡,Hardt 等人提出了平等机会的概念(EO),其设计要符合准确性。事实上,可以证明,如果输入数据的来源是决定性的,这两个概念是相互配合的。但是,在概率方面,情况会发生变化。正如我们所显示的那样,有一些概率性的数据来源,EO只能以完全损害准确性的方式实现,即在实现EO的模型中,那些其预测并不取决于输入的模型具有最高准确性。

0
下载
关闭预览

相关内容

机器学习系统设计系统评估标准
专知会员服务
66+阅读 · 2021年5月21日
专知会员服务
123+阅读 · 2020年9月8日
【DeepMind】强化学习教程,83页ppt
专知会员服务
152+阅读 · 2020年8月7日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
已删除
AI掘金志
7+阅读 · 2019年7月8日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
CCF推荐 | 国际会议信息10条
Call4Papers
8+阅读 · 2019年5月27日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
【推荐】卷积神经网络类间不平衡问题系统研究
机器学习研究会
6+阅读 · 2017年10月18日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
VIP会员
相关VIP内容
专知会员服务
66+阅读 · 2021年5月21日
专知会员服务
123+阅读 · 2020年9月8日
【DeepMind】强化学习教程,83页ppt
专知会员服务
152+阅读 · 2020年8月7日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
已删除
AI掘金志
7+阅读 · 2019年7月8日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
CCF推荐 | 国际会议信息10条
Call4Papers
8+阅读 · 2019年5月27日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
【推荐】卷积神经网络类间不平衡问题系统研究
机器学习研究会
6+阅读 · 2017年10月18日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员