This work proposes a novel singularity avoidance approach for real-time trajectory optimization based on known singular configurations. The focus of this work lies on analyzing kinematically singular configurations for three robots with different kinematic structures, i.e., the Comau Racer 7-1.4, the KUKA LBR iiwa R820, and the Franka Emika Panda, and exploiting these configurations in form of tailored potential functions for singularity avoidance. Monte Carlo simulations of the proposed method and the commonly used manipulability maximization approach are performed for comparison. The numerical results show that the average computing time can be reduced and shorter trajectories in both time and path length are obtained with the proposed approach
翻译:本文提出一种新的避免奇异性的方法,用于基于已知奇异构型的实时轨迹优化。本文的重点在于分析具有不同运动学结构的三个机器人的运动学奇异构型,即Comau Racer 7-1.4,KUKA LBR iiwa R820和Franka Emika Panda,并利用这些构型来设计定制的潜力函数以避免奇异性。进行了基于蒙特卡洛模拟的所提出的方法和通常使用的操纵性最大化方法的比较。数值结果表明,所提出的方法可以减少平均计算时间,并获得时间和路径长度较短的轨迹。