Stan is a very popular probabilistic language with a state-of-the-art HMC sampler but it only offers a limited choice of algorithms for black-box variational inference. In this paper, we show that using our recently proposed compiler from Stan to Pyro, Stan users can easily try the set of algorithms implemented in Pyro for black-box variational inference. We evaluate our approach on PosteriorDB, a database of Stan models with corresponding data and reference posterior samples. Results show that the eight algorithms available in Pyro offer a range of possible compromises between complexity and accuracy. This paper illustrates that compiling Stan to another probabilistic language can be used to leverage new features for Stan users, and give access to a large set of examples for language developers who implement these new features.
翻译:Stan是一种非常流行的概率学语言,具有最先进的HMC取样器,但它只能为黑盒变异推断提供有限的算法选择。 在本文中,我们表明,使用我们最近提议的从Stan到Pyro的编译器, Stan用户可以很容易地尝试在Pyro为黑盒变异推断而采用的一套算法。我们评估了我们在Poseterienti DB数据库上的方法,这个数据库是Stan模型数据库,有相应的数据和参考后继体样本。结果显示,Pyro中的八种算法在复杂性和准确性之间提供了一系列可能的折中。 这份文件表明,将Stan编成另一种概率语言可以用来为Stan用户利用新特征,并为实施这些新特征的语言开发者提供大量实例。