There exists no comprehensive metric for describing the complexity of Multi-Object Tracking (MOT) sequences. This lack of metrics decreases explainability, complicates comparison of datasets, and reduces the conversation on tracker performance to a matter of leader board position. As a remedy, we present the novel MOT dataset complexity metric (MOTCOM), which is a combination of three sub-metrics inspired by key problems in MOT: occlusion, erratic motion, and visual similarity. The insights of MOTCOM can open nuanced discussions on tracker performance and may lead to a wider acknowledgement of novel contributions developed for either less known datasets or those aimed at solving sub-problems. We evaluate MOTCOM on the comprehensive MOT17, MOT20, and MOTSynth datasets and show that MOTCOM is far better at describing the complexity of MOT sequences compared to the conventional density and number of tracks. Project page at https://vap.aau.dk/motcom
翻译:用于描述多物体跟踪(MOT)序列复杂性的综合性指标是不存在的。这种缺乏指标会降低解释性,使数据集的比较复杂化,并且将跟踪器性能的对话降低到领导董事会的位置。作为一种补救措施,我们介绍了新的MOT数据集复杂度指标(MOTCOM),这是由MOT中关键问题引发的三个子参数的结合:隐蔽性、不稳定运动和视觉相似性。MOTCOM的洞察力可以打开关于跟踪器性能的细微讨论,并可能导致更广泛地承认为不太为人知的数据集或旨在解决子问题的数据集开发的新贡献。我们评估了MOTCOM关于全面的MOT17、MOT20和MOTSynth数据集的情况,并表明MOTCOM在描述MOT序列的复杂性与常规密度和轨道数目相比要好得多。项目网页见https://vap.aau.dk/motcom。