In up-to-date machine learning (ML) applications on cloud or edge computing platforms, batching is an important technique for providing efficient and economical services at scale. In particular, parallel computing resources on the platforms, such as graphics processing units (GPUs), have higher computational and energy efficiency with larger batch sizes. However, larger batch sizes may also result in longer response time, and thus it requires a judicious design. This paper aims to provide a dynamic batching policy that strikes a balance between efficiency and latency. The GPU-based inference service is modeled as a batch service queue with batch-size dependent processing time. Then, the design of dynamic batching is a continuous-time average-cost problem, and is formulated as a semi-Markov decision process (SMDP) with the objective of minimizing the weighted sum of average response time and average power consumption. The optimal policy is acquired by solving an associated discrete-time Markov decision process (MDP) problem with finite state approximation and "discretization". By creatively introducing an abstract cost to reflect the impact of "tail" states, the space complexity and the time complexity of the procedure can decrease by 63.5% and 98%, respectively. Our results show that the optimal policies potentially possess a control limit structure. Numerical results also show that SMDP-based batching policies can adapt to different traffic intensities and outperform other benchmark policies. Furthermore, the proposed solution has notable flexibility in balancing power consumption and latency.


翻译:在更新云层或边缘计算平台的机器学习(ML)应用中,批量是大规模提供高效和经济服务的重要技术,特别是平台上的平行计算资源,如图形处理器(GPUs),具有较大的批量规模,具有较高的计算和能源效率;然而,批量规模较大还可能导致较长的反应时间,因此需要明智的设计。本文件旨在提供一个动态的批量政策,在效率和延缓之间实现平衡。基于 GPU 的推论服务是按批量数量大小的处理时间进行批量服务队列的模型。然后,动态批量设计是一个持续时间平均成本问题,是半Markov决定程序(SMDP),目的是最大限度地减少平均反应时间和平均电耗的加权总和。通过解决相关的离散时间Markov 决策程序(MDP) 问题,以有限的状态近似和“不均匀化” 。创造性地引入抽象成本,以反映“连续”状态、空间复杂性和清晰的消费政策的影响。

0
下载
关闭预览

相关内容

Processing 是一门开源编程语言和与之配套的集成开发环境(IDE)的名称。Processing 在电子艺术和视觉设计社区被用来教授编程基础,并运用于大量的新媒体和互动艺术作品中。
专知会员服务
50+阅读 · 2020年12月14日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年3月17日
Arxiv
20+阅读 · 2021年9月22日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员