We consider the mobile robot dispersion problem in the presence of faulty robots (crash-fault). Mobile robot dispersion consists of $k\leq n$ robots in an $n$-node anonymous graph. The goal is to ensure that regardless of the initial placement of the robots over the nodes, the final configuration consists of having at most one robot at each node. In a crash-fault setting, up to $f \leq k$ robots may fail by crashing arbitrarily and subsequently lose all the information stored at the robots, rendering them unable to communicate. In this paper, we solve the dispersion problem in a crash-fault setting by considering two different initial configurations: i) the rooted configuration, and ii) the arbitrary configuration. In the rooted case, all robots are placed together at a single node at the start. The arbitrary configuration is a general configuration (a.k.a. arbitrary configuration in the literature) where the robots are placed in some $l<k$ clusters arbitrarily across the graph. For the first case, we develop an algorithm solving dispersion in the presence of faulty robots in $O(k^2)$ rounds, which improves over the previous $O(f\cdot\text{min}(m,k\Delta))$-round result by \cite{PS021}. For the arbitrary configuration, we present an algorithm solving dispersion in $O((f+l)\cdot\text{min}(m, k \Delta, k^2))$ rounds, when the number of edges $m$ and the maximum degree $\Delta$ of the graph is known to the robots.
翻译:我们认为,在有缺陷的机器人(raps-fault)的存在时,移动机器人的分散问题就会发生。移动机器人的分散问题包括$k\leq n$ n$的机器人在$n$-node 匿名图中。 目标是确保不管机器人最初在节点上的位置如何, 最后的配置包括每个节点上最多有一个机器人。 在崩溃- 断层设置中, 高达$f\leq k$的机器人可能会因任意崩溃而失败, 并随后丢失在机器人体内储存的所有信息, 使他们无法进行沟通。 在本文中, 我们通过考虑两种不同的初始配置来解决崩溃- 错误设置中的分散问题 : i) 根的配置, 和ii) 任意的配置。 在根的案例中, 所有机器人都被放在一个单一节点上。 任意配置( a. k. a. a. a. 任意配置) 机器人被放置在某种 $l=k$( 美元) 的分类中, 使他们无法进行交流。 对于第一个案例, 我们开发一种算算算解在 $O\\\\\\\\\ t 圆中存在的错误结果。