Large language models promise a broad set of functions, but when not given a specific objective, they default to milquetoast results such as drafting emails littered with cliches. We demonstrate that inferring the user's in-the-moment objective, then rapidly optimizing for that singular objective, enables LLMs to produce tools, interfaces, and responses that are more responsive and desired. We contribute an architecture for automatically inducing just-in-time objectives by passively observing user behavior, then steering downstream AI systems through generation and evaluation against this objective. Inducing just-in-time objectives (e.g., "Clarify the abstract's research contribution") enables automatic generation of tools, e.g., those that critique a draft based on relevant HCI methodologies, anticipate related researchers' reactions, or surface ambiguous terminology. In a series of experiments (N=14, N=205) on participants' own tasks, JIT objectives enable LLM outputs that achieve 66-86% win rates over typical LLMs, and in-person use sessions (N=17) confirm that JIT objectives produce specialized tools unique to each participant.
翻译:大型语言模型具备广泛的功能,但当未给定具体目标时,其默认输出往往流于平庸,例如生成充斥陈词滥调的邮件草稿。本文证明,通过推断用户的即时目标并针对该单一目标进行快速优化,能够使LLM生成更具响应性且更符合期望的工具、界面与回复。我们提出一种架构,通过被动观察用户行为自动推导即时目标,并基于该目标引导下游人工智能系统进行生成与评估。即时目标的推导(例如“阐明摘要的研究贡献”)支持工具的自动生成,例如基于相关人机交互方法论批判草稿、预测相关研究者的反应或识别模糊术语的工具。在一系列针对参与者自身任务的实验中(N=14,N=205),采用即时目标的方法使LLM输出在66-86%的对比中优于常规LLM;现场使用环节(N=17)进一步证实,即时目标能够为每位参与者生成独特的专用工具。