Rising global food demand and harsh working conditions make fruit harvest an important domain to automate. Peduncle localization is an important step for any automated fruit harvesting system, since fruit separation techniques are highly sensitive to peduncle location. Most work on peduncle localization has focused on computer vision, but peduncles can be difficult to visually access due to the cluttered nature of agricultural environments. Our work proposes an alternative method which relies on mechanical -- rather than visual -- perception to localize the peduncle. To estimate the location of this important plant feature, we fit wrench measurements from a wrist force/torque sensor to a physical model of the fruit-plant system, treating the fruit's attachment point as a parameter to be tuned. This method is performed inline as part of the fruit picking procedure. Using our orchard proxy for evaluation, we demonstrate that the technique is able to localize the peduncle within a median distance of 3.8 cm and median orientation error of 16.8 degrees.
翻译:全球粮食需求的增加和艰苦的工作条件使水果收获成为实现自动化的重要领域。对于任何自动化水果收获系统来说,切核切除是一个重要的步骤,因为水果分离技术对切核切除地点非常敏感。大部分关于切核切除地点的工作都以计算机视觉为重点,但由于农业环境的杂乱性质,切核切除可能难以视觉进入。我们的工作提出了一种替代方法,该方法依靠机械而不是视觉将切核切除地点定位。为了估计这一重要植物特征的位置,我们把手腕力/感应器测量结果与水果种植系统的物理模型相匹配,把水果的附加点作为要调整的参数处理。这种方法作为摘水果程序的一部分,在行内进行。我们利用果盒的代用来进行评估,我们证明这种技术能够在3.8厘米的中位距离和16.8度的中位方向误差范围内将切核切除点本地化。