In this paper we introduce a parameter dependent class of Krylov-based methods, namely CD, for the solution of symmetric linear systems. We give evidence that in our proposal we generate sequences of conjugate directions, extending some properties of the standard Conjugate Gradient (CG) method, in order to preserve the conjugacy. For specific values of the parameters in our framework we obtain schemes equivalent to both the CG and the scaled-CG. We also prove the finite convergence of the algorithms in CD, and we provide some error analysis. Finally, preconditioning is introduced for CD, and we show that standard error bounds for the preconditioned CG also hold for the preconditioned CD.


翻译:在本文中,我们引入了一种基于Krylov法的参数依附类方法,即CD,用于解决对称线性系统。我们提供了证据,证明在我们的提案中,我们生成了共融方向序列,扩展了标准的共化梯度(CG)法的某些特性,以维护共化法的某些特性。对于我们框架中参数的具体值,我们获得了与CG和缩放CG相等的计划。我们还证明了CD中算法的有限趋同,我们提供了一些错误分析。最后,为CD引入了先决条件,我们表明先决条件的CG标准误差界限也维持了先决条件的CD。

0
下载
关闭预览

相关内容

因果图,Causal Graphs,52页ppt
专知会员服务
253+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Optimization for deep learning: theory and algorithms
Arxiv
106+阅读 · 2019年12月19日
Arxiv
8+阅读 · 2018年5月15日
VIP会员
相关VIP内容
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关论文
Top
微信扫码咨询专知VIP会员