This paper presents Memory Augmented Policy Optimization (MAPO): a novel policy optimization formulation that incorporates a memory buffer of promising trajectories to reduce the variance of policy gradient estimates for deterministic environments with discrete actions. The formulation expresses the expected return objective as a weighted sum of two terms: an expectation over a memory of trajectories with high rewards, and a separate expectation over the trajectories outside the memory. We propose 3 techniques to make an efficient training algorithm for MAPO: (1) distributed sampling from inside and outside memory with an actor-learner architecture; (2) a marginal likelihood constraint over the memory to accelerate training; (3) systematic exploration to discover high reward trajectories. MAPO improves the sample efficiency and robustness of policy gradient, especially on tasks with a sparse reward. We evaluate MAPO on weakly supervised program synthesis from natural language / semantic parsing tasks. On the WikiTableQuestions benchmark we improve the state-of-the-art by 2.5%, achieving an accuracy of 46.2%, and on the WikiSQL benchmark, MAPO achieves an accuracy of 74.9% with only weak supervision, outperforming several strong baselines with full supervision. Our code is open sourced at https://github.com/crazydonkey200/neural-symbolic-machines


翻译:本文介绍了记忆增强政策优化(MAPO):一种新的政策优化方案,其中包含了充满希望的轨迹的记忆缓冲,以降低政策梯度估计对确定环境的偏差,同时采取分立行动。该案文表示预期返回目标,是两个条件的加权总和:对具有高回报的轨迹的记忆的期待,以及对记忆外轨迹的单独期望。我们提议了3种技术,为MAPO提供一种有效的培训算法:(1) 以一个行为者-利纳结构从内部和外部分发记忆样本;(2) 对记忆的边缘可能性加以限制,以加速培训;(3) 系统探索,以发现高奖励轨迹。MAPO提高了政策梯度的样本效率和稳健性,特别是在微微的奖励任务上。我们评价MAPO对自然语言/语系定分立任务中监管不力的组合程序。关于Wiki 表问题的基准,我们改进了状态-艺术的2.5 %,实现了46.2%的精确度,以及WikS-QL基准, MAPOs在数个强的标码上,只有74.9%/MAPOI/ASy crudeal b trup pral brucal spral suply suply suplypral suplypralpral spralpralpralpralpral supalpral spral supal supalps.

0
下载
关闭预览

相关内容

Stabilizing Transformers for Reinforcement Learning
专知会员服务
57+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
171+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
187+阅读 · 2019年10月10日
MIT新书《强化学习与最优控制》
专知会员服务
273+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
4+阅读 · 2018年4月29日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员