This paper is concerned with factor left prime factorization problems for multivariate polynomial matrices without full row rank. We propose a necessary and sufficient condition for the existence of factor left prime factorizations of a class of multivariate polynomial matrices, and then design an algorithm to compute all factor left prime factorizations if they exist. We implement the algorithm on the computer algebra system Maple, and two examples are given to illustrate the effectiveness of the algorithm. The results presented in this paper are also true for the existence of factor right prime factorizations of multivariate polynomial matrices without full column rank.
翻译:本文涉及没有全行级的多变量多元矩阵的因子左主要因子化问题。 我们提出一个必要和充分的条件, 以便存在一个多变量多元矩阵等级的因子左主要因子化, 然后设计一种算法, 计算所有因素左主要因子化( 如果存在的话) 。 我们在计算机代数系统Maple上应用了算法, 并举了两个例子来说明算法的有效性 。 本文中给出的结果对于没有完整列级的多变量多元矩阵的因子右主要因子化也是正确的 。