We introduce the notion of quadratic hull of a linear code, and give some of its properties. We then show that any symmetric bilinear multiplication algorithm for a finite-dimensional algebra over a field can be obtained by evaluation-interpolation at simple points (i.e. of degree and multiplicity 1) on a naturally associated space, namely the quadratic hull of the corresponding code. This also provides a geometric answer to some questions such as: which linear maps actually are multiplication algorithms, or which codes come from supercodes (as asked by Shparlinski-Tsfasman-Vladut). We illustrate this with examples, in particular we describe the quadratic hull of all the optimal algorithms computed by Barbulescu-Detrey-Estibals-Zimmermann for small algebras. In our presentation we actually work with multiplication reductions. This is a generalization of multiplication algorithms, that allows for instance evaluation-interpolation at points of higher degree and/or with multiplicities, and also includes the recently introduced notion of "reverse multiplication-friendly embedding" from Cascudo-Cramer-Xing-Yang. All our results hold in this more general context.
翻译:我们引入了线性代码的二次体外结构概念, 并给出了它的一些属性。 然后我们展示出, 一个字段的有限维代数的任何对称双线倍增算法都可以通过在自然相关空间的简单点( 即程度和多重点1) 即相应代码的二次体外结构上通过评价- 内插法获得。 这也为一些问题提供了几何答案, 比如: 哪些线性地图实际上是乘数算法, 或哪些代码来自超级代码( Shparlinski- Tsfasman- Vladut 所要求的 ) 。 我们用实例来说明这一点, 特别是我们描述了由 Barbulescu- Destrey- Estibals- Zimmermann 计算的所有最佳算法体外结构的二次体外结构。 在我们的演示中, 我们实际上要用倍增值来工作。 这是倍增算法法的概括化算法, 允许在更高程度和/ 或多重特性的超级代码( 如Shparlinski- Developal- clas- grodu- clas- cal- gram) 引入了“ All- grevical- greal- greal- greal- clas- clas- gal- pal- gal- gard.