We introduce DeepPSL a variant of Probabilistic Soft Logic (PSL) to produce an end-to-end trainable system that integrates reasoning and perception. PSL represents first-order logic in terms of a convex graphical model -- Hinge Loss Markov random fields (HL-MRFs). PSL stands out among probabilistic logic frameworks due to its tractability having been applied to systems of more than 1 billion ground rules. The key to our approach is to represent predicates in first-order logic using deep neural networks and then to approximately back-propagate through the HL-MRF and thus train every aspect of the first-order system being represented. We believe that this approach represents an interesting direction for the integration of deep learning and reasoning techniques with applications to knowledge base learning, multi-task learning, and explainability. We evaluate DeepPSL on a zero shot learning problem in image classification. State of the art results demonstrate the utility and flexibility of our approach.


翻译:我们引入了 " 深PSL " 变式的概率软逻辑(PSL),以产生一个结合推理和认知的端到端的可训练系统。PSL代表了方形图形模型的第一阶逻辑 -- -- Hinge Loss Markov随机字段(Hinge Loss Markov 随机字段(HL-MRFs))。PSL由于适用于10亿多条地面规则的系统,因此是概率逻辑框架之一。我们的方法的关键在于利用深神经网络在一阶逻辑中代表上游,然后通过HL-MRF大约进行后方分析,从而对所代表的一阶系统的每个方面进行培训。我们认为,这一方法代表了将深层次的学习和推理技术与知识基础学习、多任务学习和解释应用相结合的有趣方向。我们评估了深PSL在图像分类中的零镜头学习问题。艺术成果状况展示了我们方法的实用性和灵活性。

0
下载
关闭预览

相关内容

Integration:Integration, the VLSI Journal。 Explanation:集成,VLSI杂志。 Publisher:Elsevier。 SIT:http://dblp.uni-trier.de/db/journals/integration/
【CMU】最新深度学习课程, Introduction to Deep Learning
专知会员服务
36+阅读 · 2020年9月12日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Facebook PyText 在 Github 上开源了
AINLP
7+阅读 · 2018年12月14日
【深度】可解释性与deep learning的发展
机器学习研究会
6+阅读 · 2017年10月15日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
0+阅读 · 2021年11月19日
Arxiv
13+阅读 · 2021年7月20日
Arxiv
64+阅读 · 2021年6月18日
Arxiv
10+阅读 · 2021年3月30日
Arxiv
19+阅读 · 2018年3月28日
VIP会员
相关VIP内容
【CMU】最新深度学习课程, Introduction to Deep Learning
专知会员服务
36+阅读 · 2020年9月12日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
相关资讯
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Facebook PyText 在 Github 上开源了
AINLP
7+阅读 · 2018年12月14日
【深度】可解释性与deep learning的发展
机器学习研究会
6+阅读 · 2017年10月15日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
相关论文
Top
微信扫码咨询专知VIP会员