One challenge of object recognition is to generalize to new domains, to more classes and/or to new modalities. This necessitates methods to combine and reuse existing datasets that may belong to different domains, have partial annotations, and/or have different data modalities. This paper formulates this as a multi-source domain adaptation and label unification problem, and proposes a novel method for it. Our method consists of a partially-supervised adaptation stage and a fully-supervised adaptation stage. In the former, partial knowledge is transferred from multiple source domains to the target domain and fused therein. Negative transfer between unmatching label spaces is mitigated via three new modules: domain attention, uncertainty maximization and attention-guided adversarial alignment. In the latter, knowledge is transferred in the unified label space after a label completion process with pseudo-labels. Extensive experiments on three different tasks - image classification, 2D semantic image segmentation, and joint 2D-3D semantic segmentation - show that our method outperforms all competing methods significantly.


翻译:对象识别的一个挑战是向新的领域、更多的类别和/或新的模式推广。这就需要采用综合和再利用现有数据集的方法,这些数据集可能属于不同的领域,具有部分说明和/或有不同的数据模式。本文将它作为一个多源域的适应和标签统一问题加以表述,并提出一种新的方法。我们的方法包括一个部分监督的适应阶段和一个完全监督的适应阶段。在前者中,部分知识从多个源域转移到目标域,并在其中融合。不匹配的标签空间之间的负转移通过三个新模块得到缓解:域注意、不确定性最大化和关注引导的对称对称一致。在后者中,知识在使用假标签完成的标签过程之后在统一标签空间进行转让。在三种不同任务上的广泛实验――图像分类、2D 语义图像分割和2D-3D 联合语义分割――表明,我们的方法大大超越了所有相互竞争的方法。

0
下载
关闭预览

相关内容

专知会员服务
23+阅读 · 2021年6月14日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
弱监督语义分割最新方法资源列表
专知
9+阅读 · 2019年2月26日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
迁移学习之Domain Adaptation
全球人工智能
18+阅读 · 2018年4月11日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
8+阅读 · 2021年10月28日
Arxiv
8+阅读 · 2020年8月30日
VIP会员
相关VIP内容
专知会员服务
23+阅读 · 2021年6月14日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
弱监督语义分割最新方法资源列表
专知
9+阅读 · 2019年2月26日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
迁移学习之Domain Adaptation
全球人工智能
18+阅读 · 2018年4月11日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员