We study zeroth-order optimization for convex functions where we further assume that function evaluations are unavailable. Instead, one only has access to a $\textit{comparison oracle}$, which given two points $x$ and $y$ returns a single bit of information indicating which point has larger function value, $f(x)$ or $f(y)$. By treating the gradient as an unknown signal to be recovered, we show how one can use tools from one-bit compressed sensing to construct a robust and reliable estimator of the normalized gradient. We then propose an algorithm, coined SCOBO, that uses this estimator within a gradient descent scheme. We show that when $f(x)$ has some low dimensional structure that can be exploited, SCOBO outperforms the state-of-the-art in terms of query complexity. Our theoretical claims are verified by extensive numerical experiments.


翻译:我们研究对 convex 函数的零顺序优化, 我们进一步假设函数评价是不存在的。 相反, 只有一个人可以使用 $\ textit{compararison oracle} $x$, 给两点x$和$y$ 返回一小块信息, 表明哪个点的函数值更大, $f(x) 美元或$f(y)$。 通过将梯度作为未知的要回收的信号处理, 我们展示了如何使用一维的压缩感应工具来构建一个稳健可靠的归正梯度估计器。 然后, 我们提出一个算法, 硬度SCOBO, 在梯度下降计划内使用这个估计符。 我们显示当 $(x) 有某种可以开发的低维结构时, 在查询复杂度方面, SCOBO 超越了最先进的状态。 我们的理论主张得到了广泛的数字实验的验证 。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Python机器学习教程资料/代码
机器学习研究会
8+阅读 · 2018年2月22日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年3月15日
Arxiv
0+阅读 · 2021年3月12日
VIP会员
相关VIP内容
专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Python机器学习教程资料/代码
机器学习研究会
8+阅读 · 2018年2月22日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员